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ABSTRACT
In the brain-computer interface system, the feature extraction of
brain signals is a crucial procedure. Especially in the multi-channel
brain signals such as Electroencephalogram (EEG), Electrocorticog-
raphy (ECoG), the channel which has the most correlation with
the goal human activity and intention is the priority concern. How-
ever, because of the complicated extraction to the feature of the
human fine part movements, most of the previous studies are aim-
ing at the imaginary or real activity of large body parts, and their
features are usually used in classification tasks. Thus, in order
to extract the feature which has a higher linear correlation with
fine body part such as fingers, this paper proposes a method com-
bining wavelet time-frequency analysis and principal component
analysis (PCA) to extract finger flexion related feature. In the first
step, the multi-channel signals will be pre-processed. Then the
time-frequency spectrum of each channel’s signal is calculated by
continuous wavelet transform. After that the spectrum is optimized,
and the first wavelet time-frequency spectrum principal component
(Wtspc) is extracted by PCA. At last, the Wtspc, which has the high-
est correlation to the corresponding finger flexion, is chosen as the
final feature. The experiment results indicate that theWtspc feature
which extracted by our method has a higher correlation than origi-
nal signals and typical time-domain features in the previous studies.
Particularly, in the local finger flexion period, the Wtspc feature
highly demonstrates a linear correlation with corresponding finger
flexion.
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1 INTRODUCTION
The goal of the brain-computer interface (BCI) is decoding or trans-
lating human intention and activity. For that purpose, various meth-
ods and appications have been proposed [1]. Some of them have
been used in controlling robotic arm [2], character recognition and
input [3], emotion recognition [4], and motor imagery recognition
[5] et al.

For the large part of human beings, it has been well studied in
previous research. Y. Gu [6] et al. use rebound of average movement-
related cortical potentials (MRCPs) in EEG signals and the power
in mu and beta band as features to discriminate two types of wrist
movement. A. J. Doud [7] et al. decode the sensorimotor rhythms
(SMRs) of upper limbs in EEG signals to control a virtual helicopter.
Y. Hashimoto [8] et al. use beta rebound in EEG signals to classify
left and right foot imagery movements at 81.6% accuracy in a single
trial. For fine body structures like a finger, T. Hayashi [9] et al.
decompose the EEG signal into alpha, beta, and gamma band as
features and use the linear discriminate analysis (LDA) to classify
finger movements. S. Bera [10] extract the feature from EEG signals
by common spatial pattern (CSP) filter, and the extremely random-
ized tree binary classifier was applied to classify the motor imagery
of thumb, index, and middle further. It achieves 74% accuracy at
rest condition of finger and 60% average accuracy of all.

As mentioned above, most of the previous studies aim at classi-
fication tasks. Their features suit for classification tasks and may
not work well at other tasks. But if the feature can discriminate
the pattern of body activity at a high linear correlation, it will be
helpful to establish a solid model to the BCI system [11]. Therefore,
aiming at finger flexion, this paper proposes a method to extract
the finger flexion related feature, which has a higher correlation
with the corresponding finger flexion.

2 DATA COLLECTION
The dataset used in this paper is dataset 4 of BCI competition IV
[12], which is an opening dataset. There are three subjects in the
dataset, and each of them has epilepsy. In the dataset, subject 1, 2
and 3 have 62, 48 and 64 channels of ECoG signals, respectively.
Meanwhile, each of the subjects has 5 channels of finger flexion
data which represent thumb, index, middle, ring and little. The
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Figure 1: The ECoG Signal Acquisition Method and Para-
digm of Dataset.

ECoG signals are collected by the electrode array that implant on
the cerebral cortex, and the finger flexion data are gathered by data
glove. The sample rate of the ECoG signals is 1000Hz, and the finger
flexion data are super-sampled to 1000Hz. In the experiment, each
subject should look at a screen that displays the finger name or
blank. If the screen shows a finger name, the subject should move
the corresponding finger simultaneously. Each cue of the finger
takes 2s and follows 2s blank. Finally, the first 2/3 (about 400000ms)
of ECoG signals and finger flexion data are taken as the training
sets, and the 1/3 (about 200000ms) remained are test sets. The ECoG
signals acquisition method and paradigm are shown in Figure 1.
The data samples of subject 1 are presented in Figure 2

3 METHOD
3.1 Data Pre-Processing
The common average reference filter (CAR) [13] is applied to pre-
process the ECoG signal in each subject. The CAR is a spatial filter
that can increase the signal-to-noise ratio (SNR). Thus, it is widely
used in EEG, ECoG, or other brain signal processes [14-16]. The

Figure 2: The Data Samples in Dataset of Subject 1.

CAR takes the form of formula (1):

S
′

h (t) = Sh (t) −
1
H

∑H−1
i=0

Si (t) (1)

Where H is the total number of ECoG signal channels,
Sh(t) and S

′

h(t) are the signals before and after CAR pre-processing
at time t on channel h.

3.2 Continuous Wavelet Transformation
After CAR pre-processing, the ECoG signals of each channel are
used in the calculation of the time-frequency spectrum by the
continuous wavelet transformation (CWT) [17]. The CWT is a
time-frequency analysis theory that usually uses in non-linear and
non-stationary random signals such as brain signals. The CWT is
defined as below:

Wf (a, b) = s(t),ψa, b(t) =
1
√
a

+∞
∫

−∞
s(t)ψ ∗(

t − b
a

)dt (2)

Where ψa, b(t)=|a|−
1
2ψ ( t−ba ) is the mother wavelet function

which satisfy the admissibility condition, a is the scale factor, and b
is the time shift factor which denotes the time location. s(t),ψa, b(t)
is the inner product of signal s(t) and ψa, b(t), f is the frequency
point that corresponds with a.
The time-frequency spectrum can be evaluated by formula (3):

|Wf (a, b)|2=
���� 1√a +∞∫−∞ s(t)ψ ∗(

t − b
a

)dt
����2 (3)

In this paper, the mother wavelet function used is the complex
morlet function which takes the form of formula(4) [18]:

ψ (t) =
1

√
πB

e−
t2
B e j2πCt (4)

Where B is the bandwidth and C is the central frequency. In the
calculation of this paper, the value of B is 3Hz and C is 3Hz too.

In order to reduce the calculation time, the time-frequency spec-
trum is calculated section-by-section in 400ms time windows. Each
section of signals will be extended symmetrically on both sides,
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Figure 3: Example of the Rest Period in Dataset Subject 1.

which can erase the distortion of the spectrum in the calculation.
Finally, the time-frequency spectrum is obtained by combining all
sections of the spectrum.

3.3 Time-Frequency Spectrum Optimization
The power density distribution (PSD) of EEG or ECoG signals is
obeyed the power law (P ∼ A/f b, where P is the power, f is the
frequency, and A, b is constant parameter respectively) [19], which
means that most of the power concentrate in the low-frequency
band. But previous studies [20] show that the movements of the
fine parts, which like the finger flexion, can cause the time-domain
waveform or power changing not only in the low-frequency band
but also in the high-frequency band. Therefore, the time-frequency
spectrum shall be optimized to suit the different frequency bands.

First, the time frequency spectrum is recalculated as formula (5)
shown: ���W h

f (a, b)
���
r
=

���W h
f (a , b)

��� /stvfinger (5)

Where |W h
f (a, b)|ris the value of recalculated spectrum, h is the

channel number, stvfinger is the standard value of spectrum to the
rest condition of finger flexion, and finger represents which finger
is researched. The stvfinger can be calculated as below:

stvfinger=
1
Nr

Nr−1∑
i=0

���W h
f (a ,bi)

��� (6)

Where bi (i = 0, 1 . . . . . . ,Nr−1) is the time point in all rest peri-
ods of the finger flexion, and Nr is the total number of rest time
points. The rest period for calculation is shown in Figure 3

After recalculation, the time-frequency spectrum can describe
the signal changing that caused by finger flexion in each Hz.

Besides, to erase the outlier value of recalculated spectrum, a
threshold is applied to filter the outlier value as formula (7):���W h

f (a , b)
���′
r
=


���W h

f (a, b)
���
r
,

���W h
f (a, b)

���
r
≤ g

0,
���W h

f (a, b)
���
r
> g

(7)

Where g is the threshold, whose value is 30 in this paper,
|W h

f (a, b)|
′

r is the final optimized time-frequency spectrum.

3.4 Wtspc Extraction
The PCA is applied to extract the Wtspc from the optimized time-
frequency spectrum. The steps of the Wtspc extraction are shown
as follows:

Suppose the optimized time-frequency spectrum as an f×t matrix
that like formula (8) shows:

W =



���W h
fi
(ai, 0)

���′
r

·s
���W h

fi
(ai,bj)

���′
r

...
. . .

...���W h
f0
(0, 0)

���′
r

·s
���W h

f0
(0,bj)

���′
r


(i = 0, 1, . . . , f − 1, j = 0, 1, . . . , t − 1)

(8)

• Step1: Transpose theW toWT.
• Step2: Each column of the WT is zero-centered and normal-
ized to getWT

s .
• Step3: Compute the covariance matrix C ofWT

s by column.
• Step4: Compute the eigenvalueλi of the matrix
C:λ1>λ2>λ3. . . . . . >λN,N < f .

• Step5: Compute the eigenvector of C:u1,u2,u3, . . . . . . ,uN.
• Step6: The principal component of the optimized time-
frequency spectrum is obtained as follows:

(y1,y2,y3, . . . . . . ,yN) = (u1,u2,u3, . . . . . . ,uN)TWT
s (9)

• Step7: The first component y1 is smoothed by a low-pass
filter and then the filtered component y1 is chosen as the
Wtspc.

3.5 Feature Selection
For N channels of ECoG signals, there are N Wtspcs that can be
obtained. But not all of them will represent the correlation with cor-
responding finger flexion. In order to determine which is the most
correlation channel with the corresponding finger, the correlation
coefficient is computed between the Wtspc on each channel and
the finger flexion data. Finally, the Wtspc which has the highest
correlation coefficient, is chosen as the feature to the corresponding
finger flexion.

In summary, the procedure of the finger flexion-related feature
extraction method is shown in Figure 4

4 THE EXPERIMENT RESULTS
4.1 The Optimized Wavelet Time-Frequency

Spectrum Feature Selection
By using the feature extraction method of this paper, the example
of the optimized wavelet time-frequency spectrum in the subject 1
training set is shown in Figure 5

In Figure 5, there is a spectrum value enhancement phenomenon
in the dashed and rounded rectangle area. This phenomenon ap-
pears when the thumb flexion begins and disappears at the flexion
end. It is the event-related synchronization and event-related desyn-
chronization (ERS/ERD) [21] phenomenon of corresponding finger
flexion. This ERS/ERD phenomenon can help us confirm which
channel correlates with the corresponding finger, and extract the
Wtspc further.

4.2 Wtspc Extraction and Feature Selection
In order to identify the most related channel to the finger flexion
in each subject, the Wtspc of all channels is extracted, and the
correlation coefficient between the Wtspc and corresponding finger
flexion data is computed. For instance, Figure 6 demostrates the
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Figure 4: The Flowchart of Feature Extraction Method.

Wtspc extraction process in the training set, and the correlation
coefficient between the thumb flexion and theWtspc of all channels
in the subject 1 training set is shown in Figure 7

As is illustrated in Figure 7, the channel whose Wtspc has the
highest correlation coefficient with thumb flexion is 42 in the subject
1 training set. That means among all channels of subject 1, channel
42 has a direct correlation with thumb flexion, and its Wtspc can be
the related feature of the thumb flexion. By normalizing the Wtspc

Figure 5: The Thumb Finger Flexion and OptimizedWavelet
Time-Frequency Spectrum of Subject 1 on Channel 42.

Table 1: The Selected Channel and Correlation Coefficient r
between Its Wtspc and Finger Flexion

Subject Finger Selected
channel

r

Subject 1 Thumb 42 0.405
Index 0 0.615
Middle 0 0.136
Ring 38 0.395
Little 16 0.294

Subject 2 Thumb 23 0.517
Index 23 0.258
Middle 2 0.177
Ring 14 0.363
Little 14 0.199

Subject 3 Thumb 48 0.430
Index 17 0.425
Middle 53 0.450
Ring 40 0.401
Little 40 0.490

and corresponding thumb flexion at the same time, Figure 8 shows
the comparison between the Wtspc and finger flexion.

Moreover, the selected channels which have the highest correla-
tion coefficient r with corresponding finger flexion in each subject
training set are listed in table 1

4.3 Results and Comparison in the Test Set
Based on the channel selection and the value of stv from the training
set, in the test set, the correlation coefficients between the finger
flexion and the Wtspc, original ECoG signals and typical time-
domain feature are computed. The results are listed in table 2. (Keep
two significant digits, Tips: The α band:8-15Hz, β band:16-31Hz
and γ band:32-128Hz of ECoG signals are all obtained by Finite
Impose Response (FIR) filter.)

In table 2, compare with the original ECoG signals and their time
domain features, the Wtspc shows a higher linear correlation with
the corresponding finger flexion. That means the Wtspc could be
an efficiency and related feature which can demonstrate the pattern
of finger flexion. Figure 9 illustrates the Wtspc and corresponding
finger flexion in the subject 1 test set.

5 DISCUSSION
In the experiment above, the Wtspc has been confirmed that it is a
related feature of finger flexion. However, as shown in table 1, there
exists a phenomenon in which some finger flexion corresponds
the same channel, especially in subject 2. This phenomenon may
confuse the matching relationship between the Wtspc feature and
the finger flexion, and the effectiveness of the Wtspc feature will
decrease. The possible factors which lead to this problem may be
complex, such as the location of electrode is both related to one
or more fingers, the finger like middle and ring can influence each
other when flexion appears et al. Despite the fact that this phenom-
enon can affect our research of finger flexion, on the channel which
related multiple fingers, the Wtspc still represent the correlation
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Figure 6: The Wtspc Extraction Process in Subject 1.

Figure 7: The Correlation Coefficient between the Thumb Flexion Data and Wtspc of All Channels in Subject 1.

Figure 8: The Comparison between the Thumb Flexion and Wtspc in Subject 1.
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Table 2: The Correlation Coefficient between the Finger Flexion and Wtspc or Other Features in Test Set

Subject Feature on same channel Thumb Index Middle Ring Little Mean

Subject1 Wtspc 0.49 0.59 0.12 0.48 0.29 0.39
Original ECoG 0.03 -0.01 -0.01 -0.02 0.02 0.01
α band of ECoG [8] 0.00 0.00 0.00 0.00 0.00 0.00
β band of ECoG [8] 0.00 0.00 0.00 0.00 0.00 0.00
γ band of ECoG [8] 0.00 0.00 0.00 0.00 0.00 0.00

Subject2 Wtspc 0.38 0.23 0.09 0.39 0.19 0.26
Original ECoG 0.00 -0.03 -0.08 0.01 0.03 -0.01
α band of ECoG 0.00 0.00 0.00 0.00 0.00 0.00
β band of ECoG 0.00 0.00 0.00 0.00 0.00 0.00
γ band of ECoG 0.00 0.00 0.00 0.00 0.00 0.00

Subject3 Wtspc 0.46 0.42 0.57 0.53 0.54 0.50
Original ECoG -0.18 -0.13 -0.08 -0.01 -0.01 -0.08
α band of ECoG 0.00 0.00 0.00 0.00 0.00 0.00
β band of ECoG 0.00 0.00 0.00 0.00 0.00 0.00
γ band of ECoG 0.00 0.00 0.00 0.00 0.00 0.00

Total mean Wtspc 0.38
Original ECoG -0.03
α band of ECoG 0.00
β band of ECoG 0.00
γ band of ECoG 0.00

Figure 9: The Comparison between Finger Flexion and Wtspc in Subject 1 Test Set.

with finger flexion in the local flexion period. By taking subject 2
as an example, the Figure 10 shows the comparison between the
Wtspc and finger flexion in the local period of subject 2 test set.

As is shown in Figure 10, the waveform of the Wtspc on channel
23 of subject 2 and the index flexion is similar in the local index
flexion period, even though the correlation coefficient is low in the
whole period. The correlation coefficient in the local period, which
Figure 10 shows, is 0.74. Furthermore, the results of the local period
in subject 2 test set are listed in table 3 (Keep two significant digits).

In consideration of the limited space to this paper, other subjects
will not be discussed in this paper, but they have similar results like
subject 2 in their local flexion period.

6 CONCLUSION
In this paper, a finger flexion-related feature extraction method
based on time-frequency analysis is proposed. The experimental
results indicate that the Wtspc feature has a higher correlation to
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Table 3: The Correlation Coefficient between Wtspc and Finger Flexion in Local Period of Subject 2 Test Set

Subject Finger Local flexion period Correlation coefficient Mean

Subject2 Thumb 33500ms-38000ms 0.65 0.43
90700ms-98000ms 0.72
109600ms-115000ms 0.57
129600ms-143000ms 0.30
146000ms-150000ms -0.01
153800ms-159000ms -0.01
173800ms-177500ms 0.79

Index 0ms-2000ms 0.94 0.59
2000ms-6000ms 0.74
21800ms-25500ms 0.75
29800ms-34500ms 0.69
97800ms-102000ms 0.55
113700ms-118000ms 0.42
162400ms-166000ms 0.38
181500ms-194000ms 0.27

Middle 5700ms-10000ms 0.73 0.52
25900ms-29500ms 0.07
103000ms-106500ms 0.68
117900ms-121500ms 0.68
169600ms-174000ms 0.46

Ring 13800ms-18000ms 0.82 0.73
26000ms-30500ms 0.65
42000ms-46000ms 0.87
53600ms-61500ms 0.75
69800ms-73500ms 0.81
73500ms-77500ms 0.87
77800ms-83000ms 0.56
85900ms-90000ms 0.73
142000ms-146700ms 0.79
158000ms-163000ms 0.43
177800ms-181500ms 0.66
194000ms-200000ms 0.78

Little 9600ms-15000ms 0.48 0.48
17800ms-22000ms 0.52
37700ms-42000ms 0.69
45700ms-53500ms 0.65
62000ms-69500ms 0.05
78000ms-87000ms 0.48
105800ms-109500ms 0.59
121600ms-125500ms 0.72
125500ms-130000ms 0.36
165800ms-169500ms 0.26

corresponding finger flexion, and it can demonstrate the pattern of
finger flexion in the whole or local period. The Wtspc feature could
be used in other BCI-related studies or applications. In later work,
more algorithms like machine learning will apply to enhance the
real-time and efficiency of the Wtspc feature, and we will continue
the research of the matching relationship between the body activity
and ECoG signals on cerebral cortex area. We believe that the
Wtspc feature will be helpful to the research or application of the

relationship between the brain signals and human physical activity
such as controlling robotic arm by brain signals, tactile sensation
recognition and diagnosis of neuro system disease et al.
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Figure 10: The Wtspc of Channel 23 and Corresponding In-
dex Finger Flexion in Local Period of Subject 2 Test Set.
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